پیش‌بینی توان کشی آسیای نیمه خود شکن با شبکه عصبی مصنوعی شعاعی بر اساس مولفه‌های اصلی

نویسندگان

  • بهرام رضایی گروه فرآوری مواد معدنی، دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران، ایران
  • فاطمه السادات حسینیان گروه فرآوری مواد معدنی، دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران، ایران
چکیده مقاله:

ارائه مدل‎های آسیای نیمه خودشکن برای پیش‌بینی کارآیی آن یکی از ابزارهای مفید برای طراحی بهتر مدار خردایش است. هرچند پیش از این مدل‌های آسیای نیمه خودشکن زیادی ارائه شده است ولی در اکثر آن‌ها پیش‌بینی کارآیی آسیا در مقیاس صنعتی انجام نشده است. توان‌کشی آسیای نیمه خودشکن تاثیر موثری بر کارآیی آسیا دارد؛ بنابراین در این مطالعه، مدل جدیدی بر اساس ترکیب شبکه عصبی مصنوعی شعاعی و مولفه‌های اصلی برای پیش‌بینی توان‌کشی آسیای نیمه خود شکن ارائه شده است. پارامترهای رطوبت بار اولیه، دبی بار اولیه، وزن بار داخل آسیا، درصد جامد بار اولیه، دبی آب ورودی و خروجی به آسیا و اندیس کار انتخاب و تاثیر آن بر توان‌کشی آسیا بررسی شد. نتایج نشان داد که مدل ترکیبی شبکه عصبی مصنوعی و مولفه‌های اصلی آموزش یافته با 8512/0 = R و 7115/65 = RMSE قابلیت استفاده برای پیش‌بینی توان‌کشی آسیای نیمه خود شکن در مقیاس صنعتی را دارد. نتایج آنالیز حساسیت نشان داد که تمامی پارامترهای ورودی به مدل تاثیر معناداری بر خروجی دارند.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیشبینی آماری پهنه بندی خطر زلزله احتمالی با استفاده شبکه های عصبی مصنوعی

پیش‌بینی محل وقوع زلزله‌های آتی همراه با تعیین درصد احتمال رخداد، می‌تواند در کاهش خطرات ناشی از زلزله بسیار سودمند باشد. تعیین محل‌های پیش‌بینی شده، سبب افزایش توجه به طراحی، به‌سازی لرزه­ای و ارزیابی قابلیت اعتمادپذیری سازه‌های موجود در این مکان‌ها می‌شود. در پیش‌بینی زمان وقوع زلزله فرضیه‌ها و نظریه‌های گسترده‌ای مطرح است. هنوز شیوه‌ای دقیق برای پیش‌بینی زمان رخداد زلزله‌های آتی مورد تأیید ق...

متن کامل

طراحی گرین فینوسیل بر اساس متامدلهای شبکه عصبی مصنوعی

Grain design is the most important part of solid rocket motor design. In this paper the goal is Finocyl grain design based on predetermined objective function with respect to Thrust history or Pressure history in order to satisfy various thrust performance requirements through an innovative design approach using Genetic algorithm optimization method. The classical sampling method is used for de...

متن کامل

پیش بینی تراز آب زیرزمینی دشت شاهرود استفاده از شبکه عصبی مصنوعی تابع پایه شعاعی

     Groundwater level prediction is an important issue in scheduling and managing water resources. A number of approaches such as stochastic, fuzzy networks and artificial neural network have been used for such prediction. A neural network model has been employed in this research for Shahrood plain groundwater level prediction. For this reason, statistical parameters of groundwater level fluct...

متن کامل

پیشبینی آماری پهنه بندی خطر زلزله احتمالی با استفاده شبکه های عصبی مصنوعی

پیش بینی محل وقوع زلزله های آتی همراه با تعیین درصد احتمال رخداد، می تواند در کاهش خطرات ناشی از زلزله بسیار سودمند باشد. تعیین محل های پیش بینی شده، سبب افزایش توجه به طراحی، به سازی لرزه­ای و ارزیابی قابلیت اعتمادپذیری سازه های موجود در این مکان ها می شود. در پیش بینی زمان وقوع زلزله فرضیه ها و نظریه های گسترده ای مطرح است. هنوز شیوه ای دقیق برای پیش بینی زمان رخداد زلزله های آتی مورد تأیید ق...

متن کامل

درجه بندی زعفران بر اساس ویژگی های ظاهری با استفاده از شبکه های عصبی مصنوعی

زعفران به‌عنوان یک کالای تجاری مهم در کشور به­شمار می‌آید و توجه به مکانیزه کردن آن از مرحله تولید تا بسته‌بندی اهمیت زیادی دارد. در بدو ورود زعفران به فرایند کیفی سنجی در آزمایشگاه ، ارزیابی اولیه بر اساس مشخصات ظاهری زعفران توسط شخص خبره انجام می‌شود. لیکن بروز خطای انسانی در تشخیص کیفیت زعفران بر مبنای ویژگی‌های ظاهری آن امری اجتناب‌‌ناپذیر‌ است؛ استفاده از تکنیک‌های مبتنی بر هوش مصنوعی می‌ت...

متن کامل

تقسیم بهینه توان اکتیو و راکتیو بین چند منبع تولید پراکنده در یک شبکه مستقل با شبکه عصبی مصنوعی

در این مقاله به تقسیم بهینه توان اکتیو و راکتیو بین منابع تولید پراکنده تغذیه کننده یک شبکه مستقل با استفاده از شبکه عصبی مصنوعی پرداخته شده است. منابع تولید پراکنده تغذیه کننده شبکه مستقل توسط اینورتر به شبکه متصل شده و یک سیستم مدیریت هوشمند و on-line با استفاده از شبکه های عصبی مصنوعی، مقادیر بهینه میزان تولید واحدها را ارائه می دهد. کنترل کننده محلی موجود در کنار هر سیستم تحقق میزان توان تو...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 50  شماره 3

صفحات  111- 120

تاریخ انتشار 2018-08-23

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023